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Abstract 
Simultaneous trimodal PET/MRI/EEG resting state (rs) brain data were acquired from 

10 healthy male volunteers. The rs-fMRI metrics, such as regional homogeneity 

(ReHo), degree centrality (DC), and fractional amplitude of low frequency fluctuations 

(fALFF), as well as FDG-PET standardised uptake value (SUV), were calculated and 

the measures were extracted from the default mode network (DMN) regions of the 

brain. Similarly, four microstates for each subject, showing the diverse functional 

states of the whole brain via topographical variations due to global field power (GFP), 

were estimated from artefact corrected EEG signals. In this exploratory analysis, the 

GFP of microstates was non-parametrically compared to rs-fMRI metrics and FDG-

PET SUV measured in the DMN of the brain. The rs-fMRI metrics (ReHO, fALFF) 

and FDG-PET SUV did not show any significant correlations with any of the 

microstates. The DC metric showed a significant positive correlation with microstate 

C (rs=0.73, p=0.01). FDG-PET SUVs indicate a trend for a negative correlation with 

microstates A, B and C. The positive correlation of microstate C with DC metrics 

suggests a functional relationship between cortical hubs in the frontal and occipital 

lobes. The results of this study suggest further exploration of this method in a larger 

sample and in patients with neuropsychiatric disorders. The aim of this exploratory 

pilot study is to lay the foundation for the development of such multimodal measures 

to be applied as biomarkers for diagnosis, disease staging, treatment response, and 

monitoring of neuropsychiatric disorders. 
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Introduction 

Recent developments in medical imaging technologies have made the simultaneous 

measurement of the three modalities magnetic resonance imaging (MRI), positron 

emission tomography (PET), and electroencephalography (EEG) feasible (N.J. Shah, 

Arrubla, Rajkumar, Farrher, Mauler, Kops, et al., 2017). The main advantage of such 

technology is that structural and functional (via MRI), metabolic (via PET) and 

electrophysiological (via EEG) signatures can be confined simultaneously under the 

same physiological and psychological conditions (N. Jon Shah et al., 2013). 

Exploitation of such simultaneous multimodal neuroimaging technology has enabled 

neuroscientists to explore the functioning of the human brain using the diverse 

information provided by each modality with different temporal and spatial resolutions. 

The complementary value of the information provided by each modality is 

considerably increased by the simultaneous execution of MR, PET and EEG. The 

physiological information provided by each modality is as follows: 

• Functional MRI (fMRI) measures brain activity in an indirect fashion via the 

blood oxygenation level-dependent (BOLD) contrast (Ogawa, Lee, Kay, & 

Tank, 1990). 

• PET provides quantitative molecular information (Dardo Tomasi, Wang, & 

Volkow, 2013). 

• EEG, a direct measure of neuronal activity records the electrophysiological 

signals of the brain with high temporal resolution. Electrical activity that occurs 

at synapses of neurons and changes in neuronal cell membrane permeability 

create EEG signals (Davidson, Jackson, & Larson, 2007). 

A number of image and signal analysis methods (Bowman et al. 2007; Abreu et al. 

2018; Boellaard 2008; Bai et al. 2017) are available to process, either qualitatively or 

quantitatively, the data obtained from each imaging modality. Combined analysis of 
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the complimentary information provided by each modality can help in understanding 

the complex relationships between the various physiological mechanisms of the 

brain. The relationship between simultaneously recorded bi-modalities, such as 

fMRI/PET (Aiello et al., 2015; Riedl et al., 2014, 2015), fMRI/EEG (Goldman, Stern, 

Engel, & Cohen, 2000; Huster, Debener, Eichele, & Herrmann, 2012; Ritter & 

Villringer, 2006), and PET/EEG (Hur, Lee, Lee, Yun, & Kim, 2013), has already been 

reported by a number of groups. Furthermore, other research has shown the 

feasibility  and application (Golkowski et al., 2017; Guerra et al., 2017; N. J. Shah, 

Arrubla, Rajkumar, Farrher, Mauler, Rota Kops, et al., 2017) of simultaneous trimodal 

(MR/PET/EEG) measurements. Even though various functional relationships 

between simultaneously recorded bimodal and trimodal data have already been 

investigated and reported on, an exploratory analysis on the neuroelectric 

(electrophysiology as measured by EEG) metrics and its relationship with 

neurovascular (hemodynamic response as measured by BOLD fMRI) and 

neurometabolic (metabolic activity as measured by PET) metrics on a simultaneously 

recorded resting state (rs) trimodal data set has not yet been reported. In this work 

we performed an exploratory analysis on simultaneously recorded rs-trimodal data in 

order to elucidate the relationship between neuroelectric measures with 

neurovascular and neurometabolic measures.  

Analysis of simultaneously recorded trimodal data can advance the understanding of 

the brain functions in general. The main future advantage of multimodal analysis 

techniques lies in the definition of image based biomarkers for neurological and 

psychiatric disorders with the help of machine learning approaches (Polikar, Tilley, 

Hillis, & Clark, 2010). The simultaneous approach is especially valuable for the 

prediction of response to a given medication based on a pharmacological challenge 

during trimodal scanning (Bayouth et al., 2011). This would also prevent cofounding 
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effects inevitable with separate scanning sessions (Laruelle et al., 1997). Also, by 

utilising the multimodal data, the accuracy in early diagnosis of neurological and 

psychiatric disorders could be improved. Furthermore, possibilities with regard to the 

potential applications of multimodal neuroimaging are already well reviewed and 

discussed in literatures (S. Liu et al., 2015; O’Halloran, Kopell, Sprooten, Goodman, 

& Frangou, 2016; Uludağ & Roebroeck, 2014). A study has shown potential in vivo 

markers for neocortical neuronal loss in Alzheimer’s disease by utilizing multimodal 

evidences from MRI, PET and EEG (Hampel et al., 2002). A recently published pilot 

study has shown the feasibility of simultaneous trimodal data acquisition in 

schizophrenic patients (Guerra et al., 2017). The potential of utilising resting state 

fMRI (rs-fMRI) data as biomarker in neurodegenerative disorders is also discussed in 

the literature (Hohenfeld, Werner, & Reetz, 2018). rs-fMRI is an fMRI technique that 

measures the low-frequency fluctuations in the BOLD signal while the subject is in 

the resting condition (not actively performing any task). Since the discovery of rs-

fMRI (Biswal, Yetkin, Haughton, & Hyde, 1995), several methods have been 

developed to analyse rs-fMRI data (M. H. Lee, Smyser, & Shimony, 2013) and the 

possibility of deriving various rs-fMRI metrics has also been reported (Shehzad et al., 

2009; Zhang, Han, Hu, Guo, & Liu, 2013; Zuo et al., 2010, 2013). In this exploratory 

analysis, the following rs-fMRI metrics were considered for comparison with other 

neuroelectric and neurometabolic measures: 

• Regional Homogeneity (ReHo) (Yufeng Zang, Jiang, Lu, He, & Tian, 2004) is 

a voxel based measure used to characterise the functional homogeneity of the 

rs-fMRI signal within a short range. ReHo weighs the degree of 

synchronisation between a given voxel and it’s nearest neighbouring voxel's 

time series. Kendall’s coefficient of concordance (KCC) (Stuart, 1956) is used 

as an index to measure the degree of synchronisation in ReHo analysis. Since 
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the ReHo metric considers only neighbouring voxels, it depicts the strength of 

functional connectivity within neighbouring voxels. A voxel with a high ReHo 

value is functionally well connected with neighbouring voxels. ReHo analysis 

has been applied considerably in rs-fMRI data analysis (Long et al., 2008; 

Yufeng Zang et al., 2004) and changes in ReHo values have also been 

reported in schizophrenia (Guerra et al., 2017; H. Liu et al., 2006), Alzheimer’s 

disease (He et al., 2007) and in several other disorders. 

• Degree Centrality (DC) (R L Buckner et al., 2009; Joyce, Laurienti, Burdette, 

& Hayasaka, 2010) or global functional connectivity density (D. Tomasi & 

Volkow, 2012) is a functional connectivity measure, which estimates the 

number of direct functional connections between a given voxel and all the 

other voxels in the brain. Pearson’s correlation coefficient is used as the 

measure to estimate DC. The DC metric considers all the voxels, and thus the 

value shown by the DC metric is the sum of local and long range functional 

connectivity. Since the long range voxels are comparatively high in number, 

the DC metric can be considered as a long range functional connectivity 

measure. A voxel with a higher DC value means that this particular voxel is 

functionally well connected to many other voxels. DC has been largely studied 

to reveal the cortical functional hubs in the brain (R L Buckner et al., 2009; 

Zuo et al., 2012). 

• Amplitude of low frequency fluctuations (ALFF) (Y Zang et al., 2007) and 

Fractional amplitude of low frequency fluctuations (fALFF) (Zou et al., 

2008) are interrelated measures that quantify the amplitude of low frequency 

oscillations (LFO), a fundamental feature of the rs-fMRI measurements. The 

ALFF measure of an rs-fMRI voxel time series is defined as the total power 

within the low frequency range between 0.01 and 0.1 Hz. Similarly, the fALFF 
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measure of an rs-fMRI voxel time series is defined as the power within the 

low-frequency range (0.01-0.1 Hz) divided by the total power in the entire 

detectable frequency range. The ALFF and fALFF metrics only consider the 

time series of single voxels. Hence these measures did not reveal functional 

relationships with other voxels. However, the ALFF metric describes the 

strength of LFO, while the fALFF metric describes the relative contribution of 

LFO to the whole frequency range. Thus, ALFF and fALFF characterise the 

slow fluctuations in the resting brain. Deviation in ALFF has been reported in 

children with attention deficit hyperactivity disorder (ADHD) (Y Zang et al., 

2007) and is also associated with mild cognitive impairment (MCI) (Xi et al., 

2012). Furthermore, the variations in fALFF has been reported in relation to 

healthy aging (S. Hu, Chao, Zhang, Ide, & Li, 2014). Since ALFF and fALFF 

are interrelated measures, only the fALFF measure is further considered in 

this study. 

The ongoing glucose energy metabolism during the resting condition can be 

quantified using 2-[18F]fluoro-2-desoxy-D-glucose PET (FDG-PET) (e.g. Riedl et al. 

2014). The glucose metabolism, measured via  FDG-PET, mainly reflects local 

neuronal and synaptic activity (Berti, Mosconi, & Pupi, 2014; Sokoloff, 1981). The 

standardised uptake value (SUV) is a widely used semi-quantitative measure of the 

FDG uptake in the tissue or organ of interest (Thie, 2004). FDG-PET SUV can be 

compared with rs-fMRI and neuroelectric measures. Using FDG-PET, it has been 

found that glucose metabolism is reduced in patients with Alzheimer's disease and 

MCI (Kennedy et al., 1995; Landau et al., 2011; L. Mosconi et al., 2005).  

Neuroelectric signals arising from the functioning of large-scale neuronal networks in 

the brain can be accessed via multichannel EEG. The spatial distribution of active 

neurons or neuronal networks can be revealed by EEG scalp topography. Such 
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topographies are found to be quasi-stable for periods of about 80-120 ms (Koenig et 

al., 2002; D. Lehmann & Skrandies, 1980) and these quasi stable periods are known 

as EEG microstates . Thus, EEG microstates embody the summation of 

instantaneously active neuronal sources in the brain. Most of the rs-EEG studies 

have consistently identified four topographies (usually labelled as A, B, C and D) 

across the entire recording, with each of these topographies constituting a 

“microstate map” (Khanna, Pascual-Leone, Michel, & Farzan, 2015; Koenig et al., 

2002). The topographies observed in the microstate maps are right-frontal left-

posterior (A), left-frontal right-posterior (B), midline frontal-occipital (C), and midline 

frontal (D). The functional interpretation of such observed microstate map is based 

on the assumption that each map (topography) is generated by the coordinated 

activity of diverse neuronal assemblies. Transition of microstate maps may be 

regarded as sequential activation of various neuronal assemblies (Khanna et al., 

2015). Changes in the frequency of occurrence, duration and transition patterns in 

microstates have been reported in various neuropsychiatric disorders, such as 

Alzheimer’s disease (Dierks et al., 1997), schizophrenia (Andreou et al., 2014; 

Tomescu et al., 2014), Tourette’s  syndrome (A. Stevens, Günther, Lutzenberger, 

Bartels, & Müller, 1996), and similar mental disorders. Since the EEG microstates 

incorporate the signals from all electrodes to show the functional state of the whole 

brain via topographical maps, it was chosen for comparison with rs-fMRI and FDG-

PET SUV. 

A small number of studies have reported the relationship between EEG microstates 

and rs-fMRI (Britz, Van De Ville, & Michel, 2010; Musso, Brinkmeyer, Mobascher, 

Warbrick, & Winterer, 2010; Van De Ville, Britz, Michel, & Nikos Logothetis, 2010) on 

simultaneously recorded rs-EEG and fMRI. The work by Britz et al. concluded that 

the four typical microstates may represent the resting state networks (RSNs).	 The 
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work by Van De Ville et al. suggested the microstates as “atoms of thoughts” (the 

shortest constituting elements of cognition). Similarly, Musso et al. showed that the 

microstate is able to elicit BOLD activation patterns in RSNs (Musso et al., 2010). 

However, these studies only reported results from bimodalities (EEG and fMRI) and 

did not consider the rs-fMRI metrics as explained above.  

Given the advantages afforded by the facility of simultaneous trimodal 

measurements, this exploratory study aims to analyse the relationship between rs-

fMRI metrics (ReHo, DC,and fALFF), neurometabolic measures (FDG-PET SUV) and 

neuroelectric measures (EEG microstates). The analysis of relationship between the 

measures will be performed on the default mode network (DMN) region of the brain. 

The DMN region is one of the most prominent and one of the most robust neuronal 

networks. The DMN region includes regions such as the posterior cingulate, 

precuneus, inferior parietal cortex, orbitofrontal cortex, medial prefrontal cortex, 

ventral anterior cingulate, left dorsolateral prefrontal cortex, left parahippocampus, 

inferior temporal cortex, nucleus accumbens and the midbrain (Randy L Buckner, 

Andrews-Hanna, & Schacter, 2008; Raichle & Snyder, 2007). The DMN is believed to 

contribute to the baseline state of the brain and it appears to play a significant role in 

large-scale functional organization of the brain (Raichle, 2015). Abnormalities in DMN 

have been reported in various neurological and psychiatric disorders (Mingoia et al., 

2012; Yao et al., 2014; Zhou et al., 2016). Moreover, DMN has been shown as a 

potential biomarker for monitoring the therapeutic effects of meditation (Simon & 

Engström, 2015), chemotherapy-related brain injury (Kesler, 2014), Alzheimer’s 

disease (Badhwar et al., 2017) etc., Considering all these potential  applications and 

widespread regions across the brain, the DMN is chosen  for comparing microstates 

with rs-fMRI and neurometabolic measures. 
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To the authors’ knowledge, such comparison of EEG microstates with rs-MRI metrics 

and neurometabolic measures in the DMN region has not yet been reported on a 

simultaneously recorded trimodal dataset. It is hoped that analysis of these 

multimodal measures, which represent diverse physiological information, will pave 

the way for understanding the complex behaviour of the brain in the resting condition 

and will help in developing new image-based biomarkers for the early detection and 

treatment monitoring of various neuropsychiatric disorders.   

Methods 

Subjects 

The trimodal data (MRI, FDG-PET and EEG) were recorded in a single scanning 

session using a 3T hybrid MR-BrainPET scanner system (Siemens, Erlangen, 

Germany) (Herzog et al., 2011). The trimodal data were recorded from 11 healthy 

male volunteers of age 28.6 ± 3.4 years. The raw dataset used in this study was 

taken from a previously published work (N.J. Shah, Arrubla, Rajkumar, Farrher, 

Mauler, Kops, et al., 2017). The study was approved by the Ethics Committee of the 

Medical Faculty of the RWTH Aachen University and the Federal Office for Radiation 

Protection (Bundesamt für Strahlenschutz). All methods used in this study were 

performed according to the relevant guidelines and regulations. This study was 

conducted according to the declaration of Helsinki and prior, written consent was 

obtained from all volunteers.  

Data Acquisition 

The data acquisition protocol for each modality is described below. 

MR data acquisition 

The following MR sequences were included in the MR data acquisition protocol: 

• magnetisation-prepared rapid acquisition gradient-echo (MP-RAGE) 

sequence (T1 weighted anatomical imaging sequence, repetition time (TR) = 
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2250 ms, echo time (TE) = 3.03 ms, field-of-view (FOV) 256 × 256 × 176 

mm3, voxel size = 1×1×1 mm3, flip angle (FA) = 9°, 176 sagittal slices and a 

GRAPPA acceleration factor of 2 with 70 auto-calibration signal lines  

• T2*-weighted echo planar imaging (EPI) (TR = 2200 ms, TE = 30 ms, FOV = 

200 × 200 × 108 mm3, voxel size = 3.125 × 3.125 × 3.0 mm3, FA = 80°, 

number of slices = 36, number of volumes = 165)  

PET data acquisition 

Subjects were instructed to fast overnight and to skip breakfast on the day of trimodal 

measurement. An intra-venous line (IV-line) was inserted in the right arm before the 

measurement in order to inject the FDG. Fasting blood glucose level was determined 

prior to the measurement. FDG was injected (200 ± 30 MBq) as a single bolus 

injection via the IV-line while the volunteer was lying in the hybrid MR-BrainPET 

scanner. The acquisition of PET started simultaneously with the injection of the FDG 

tracer and occurred in list mode. PET data were iteratively reconstructed (3D OP-

OSEM, 32 iterations and 2 subsets). The reconstructed images comprised 256 × 256 

pixels and 153 slices (voxel size 1.25 mm3, isotropic). The PET data reconstruction 

incorporated corrections for attenuation (Rota Kops, Hautzel, Herzog, Antoch, & 

Shah, 2015), random and scattered coincidences, dead time, radioactive decay, and 

pile up. Since it is not possible to acquire attenuation information of the EEG cap, the 

attenuation map used for attenuation correction did not include the EEG cap; 

however, it was proven that the components used in the EEG cap causes 

inconsequential attenuation effects (Rajkumar et al., 2017). 

EEG data acquisition 

Prior to the trimodal measurement, subjects were prepared for the EEG recording by 

having the EEG cap placed on the head, along with the application of electrolyte gel 

(ABRALYT 2000, EASYCAP GmbH, Herrsching, Germany) to reduce the 
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impedance. The impedance of all recording electrodes was kept below 10 kΩ. The 

EEG data were recorded with a Brain Vision Recorder (Brain Products, Gilching, 

Germany) using a 32-channel MR compatible EEG. The EEG cap (BrainCap MR, 

EasyCap GmbH, Herrsching, Germany) consisted of 31 scalp electrodes, was 

positioned according to the 10 - 20 system, and had one additional electrode for 

recording the electrocardiogram (ECG). The sampling rate of the EEG recording was 

5kHz. The bandwidth of the recording was between 0.016 and 250 Hz. The resting 

state (eyes closed) EEG data were recorded simultaneously during fMRI and PET 

data acquisition. The EEG data acquisition started exactly at 50 minutes after PET 

tracer injection for each subject. Subjects were instructed to close their eyes and not 

to fall asleep during the resting state measurement. The trimodal acquisition of the 

resting state data lasted for about 6 minutes. The helium pump of the MRI system 

was switched off to avoid additional vibrations on both the EEG and MR system, and 

on the subject.  

Data Analysis 

One subject’s dataset was eliminated from further analysis due to the bad quality of 

the trimodal data (due to head motion in the scanner). Thus, only 10 subjects were 

included in the subsequent analysis. 

MR data 

The rs-fMRI metrics (ReHo, DC, fALFF) were calculated using Matlab based 

software packages, SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) and DPABI (Yan, 

Wang, Zuo, & Zang, 2016). The pre-processing steps performed on fMRI volumes 

before calculating the rs-fMRI metrics included the removal of the first 10 volumes of 

the total acquisition, slice time correction with respect to the middle slice (18th slice) 

of the functional image, realignment, and nuisance covariates regression (NCR). The 

covariates for NCR included the head motion parameters calculated using Friston’s 
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24 parameter model (Friston, Williams, Howard, Frackowiak, & Turner, 1996), mean 

signals from the whole brain white matter (WM) and cerebral spinal fluid (CSF) as 

well as constant, linear and quadratic trends in the BOLD signals. Following these 

pre-processing steps, the functional connectivity measures for each subject were 

calculated in the subject’s native image space. The processing steps performed to 

calculate each connectivity measure are described below. The fALFF measure was 

calculated within the low frequency range of the BOLD fMRI signal between 0.01 and 

0.1 Hz. Temporal filtering of BOLD fMRI signal between 0.01 and 0.08 Hz was 

performed only before DC and ReHo calculation. The ReHo connectivity measure 

was calculated over a cluster of 27 neighbouring voxels (Li, Kadivar, Pluta, Dunlop, & 

Wang, 2012) using KCC as the homogeneity metric. DC measure was computed with 

the Pearson correlation cut-off of 0.25 (p = 0.001). In order to perform inter-modality 

comparison of rs-fMRI metrics, the calculated measures were linearly standardised 

into Z-values (Aiello et al., 2015) for each subject. Z-value standardisation was 

calculated by subtracting the mean whole brain voxel value from each voxel and then 

dividing the difference by the standard deviation of the whole brain. The Z-value 

standardised connectivity measures were co-registered to the MNI152 (2×2×2 mm3) 

standard space in order to perform inter-modality comparison. Finally, the calculated 

rs-fMRI metrics were smoothed with a Gaussian kernel size of 3 mm along all three 

directions. 

A mask of the DMN regions was generated by adding dorsal and ventral DMN 

regions, which were obtained from an atlas of 90 functional regions of interest 

(fROIs) (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012). The generated mask 

of the DMN region is shown in supplementary Figure 1. In order to further restrict the 

calculations to the grey matter (GM) regions, only the voxels within the GM region of 

the mask (which shows more than 50% probability of being GM) were considered 
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(GM correction). A tissue segmented MNI152 (2×2×2 mm3) template was used for 

GM correction. Finally, the voxel values within the DMN mask were extracted from 

the previously calculated fMRI metrics and a one-sample Kolmogorov-Smirnov test 

(KS test) was performed in order to verify the normality. After confirming the 

normality of the extracted voxels, the mean values of ReHo, DC, and fALFF were 

calculated. The calculated mean values were applied as rs-fMRI metrics for further 

comparison with neurometabolic and neuroelectric measures. 

PET data 

The reconstructed PET images were smoothed with a Gaussian kernel of 3 mm size 

along all three directions and corrected for motion by considering the first frame of 

the whole acquisition as the reference using the PMOD (Version 3.5) software 

package. During the first 30 minutes the uptake of FDG is reaching an equilibrium 

state; therefore, for further analysis only the acquired PET data between 30 and 60 

minutes post injection (6 frames, 5 minutes each) were considered. The six PET 

images were averaged and a SUV map was calculated accounting for the injected 

dose and body weight of the considered subject.	 The FDG-PET SUV images were 

co-registered to the FDG-PET MNI (2×2×2 mm3) template. The FDG-PET template in 

MNI space was obtained from a study by Della Rosa et al, (2014) (Della Rosa et al., 

2014). Similar to the standardisation performed for rs-fMRI metrics, the MNI co-

registered FDG-PET SUV images were also linearly standardised into Z-values. The 

voxel values within the FDG-PET SUV’s DMN region were extracted using the DMN 

mask generated previously. A one-sample KS test was performed for the extracted 

values and the mean values of FDG-PET SUV within DNM regions were calculated. 

The mean FDG-PET SUV values within DMN region were used for further 

comparison with rs-fMRI metrics and neuroelectric measures. 

EEG data 
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The EEG data were processed using the Matlab based open source software 

package EEGLAB version 13 (Delorme & Makeig, 2004) and BrainVision Analyser 

(Version 2.02, Brain Products GmbH, Germany). The EEG data were analysed in two 

steps. In the first step, the data pre-processing was performed, in which the artefacts 

were removed, and in the second step, the microstates for each subject were 

calculated. The processing stages involved in each step are explained hereafter.  

EEG data Pre-processing: 

The recorded EEG data were imported to EEGLAB and down-sampled to 1000 Hz. 

EEG data acquired simultaneously with fMRI are always heavily contaminated with 

gradient artefacts (GAs) and ballistocardiogram (BCG) artefacts, as the GAs are 

added to the EEG signal due to switching of the gradient magnets in the MR system 

during fMRI acquisitions. BCG artefacts are always present during the entire 

acquisition of EEG data, due to the pulsatile flow of blood caused by the pumping 

action of heart. 

 The GAs artefacts were removed using FASTR tool (Niazy, Beckmann, Iannetti, 

Brady, & Smith, 2005) implemented in EEGLAB. After the GAs correction, the EEG 

data were band pass filtered using a Hamming windowed sinc finite impulse 

response (FIR) filter with a lower cut-off frequency of 2 Hz and a higher cut-off 

frequency of 8 Hz for the ECG channel and 20 Hz for the remaining EEG channels 

(the filter order was calculated automatically by the eegfiltnew function implemented 

in EEGLAB). The recorded R peaks in the ECG channel data, along with the EEG 

data, were semi-manually detected using BrainVision Analyser software. The EEG 

data were again imported to EEGLAB and the BCG artefacts were removed using 

the FMRIB tool (K. H. Kim, Yoon, & Park, 2004) implemented in EEGLAB. The 

artefacts in EEG data, due to eye movement, were corrected using a blind source 

separation method (Go’mez-Herrerol et al., 2006). Bad channels in the EEG data, 
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resulting from the loose contact between the EEG electrode and the scalp, were 

removed. An independent component analysis (ICA) based decomposition was 

performed using the extended Infomax algorithm (T. W. Lee, Girolami, & Sejnowski, 

1999) on all the EEG channels. The ICA decomposition yielded 31 independent 

components. The noisy components were detected and removed using the Multiple 

Artifact Rejection Algorithm (MARA) (Winkler, Haufe, & Tangermann, 2011). The 

artefact removed EEG data were epoched with respect to the repetition time (TR) of 

the fMRI acquisition, which was 2.2 seconds. The first 10 epochs were removed from 

the EEG data, as performed for the fMRI volumes. The epoched EEG data were 

examined for movement or other residual artefacts and noisy epochs were also 

removed. 

Microstate Analysis: 

The microstates in artefact-free EEG data were analysed using the Microstate plugin 

(http://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab) 

implementation in EEGLAB. The global field power (GFP) of the multichannel EEG 

data represents the global brain activity (D. Lehmann & Skrandies, 1980). The EEG 

topographies were found to be stable around the maxima of the GFP (GFP peaks) 

(Koenig et al., 2002). Thus, the GFP peaks were calculated for each subject first. All 

EEG topographical maps marked as GFP peaks were extracted and spatial 

clustering was performed using a modified atomised and agglomerate hierarchical 

clustering (AAHC) algorithm (Tibshirani & Walther, 2005). The AAHC algorithm was 

set to identify dominant EEG topographical maps for each subject. In the next step, 

the EEG topographical maps, identified in every single subject, were submitted to the 

same modified AAHC algorithm to identify the dominant EEG topographical maps 

(group template) across all subjects. The group template topographical maps were 

then manually sorted in to microstates A, B, C and D, as reported in previous rs-
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microstate studies (Khanna et al., 2015; Koenig et al., 2002). Finally, the EEG 

topographical maps, identified for each subject, were also sorted into microstate A, B, 

C and D, as in group template maps. The sorting of microstate maps at subject level 

was performed via the calculation of the spatial correlation between the sorted group 

template maps and the EEG topographical maps identified for each subject. The 

mean GFP in each of the four microstate maps for each subject was calculated and 

used in the subsequent analysis.  

Statistics: 

In order to perform statistical comparison between the results obtained from each 

modality, the Spearman correlation coefficient was calculated between the mean 

GFP of the four microstate maps and the mean rs-fMRI metrics extracted from the 

DMN masks for each subject. The family-wise error rate (FWER), due to multiple 

comparisons, was controlled via a permutation test (Groppe, Urbach, & Kutas, 2011).  

Exactly 105 permutations were carried out for each comparison (correlation of each 

microstate to the mean rs-fMRI metrics) and the p-value was adjusted using the “max 

statistics” method reported by Groppe et al. (2011). Similarly, a Spearman correlation 

coefficient with 105 permutations was calculated between the mean GFP of the four 

microstate maps and the mean FDG-PET SUV extracted from the DMN masks for 

each subject. 

 

 

Results: 

Simultaneous trimodal data acquisition was successfully performed. The fMRI 

metrics and FDG-PET SUV were calculated as described above and the voxel values 

within the DMN mask were extracted. The one-sample KS test revealed that the 
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extracted voxel values for each of the fMRI metrics and FDG-PET SUV were 

normally distributed. Thus, the mean of the fMRI metrics and FDG-PET SUV within 

the DMN region was calculated for each subject. The calculated rs-fMRI metrics and 

FDG-PET SUV maps averaged across all the 10 subjects are shown in Figure 1. 

Artefacts due to magnetic field gradient, BCG, eye movement, head movement and 

other sources in the raw EEG data were successfully removed and verified via visual 

inspection. The four prominent microstates, widely reported in other rs-EEG studies, 

were identified for each subject. The sorted group template microstate across all 

subjects is shown in Figure 2. 

The mean GFP of each microstate was calculated and submitted for further statistical 

comparison with rs-fMRI metrics and neurometabolic measure. The Spearman 

correlation coefficients and the adjusted p-value via 105 permutations for each 

comparison are plotted in supplementary Figure 2. FDG-PET SUV as well as rs-fMRI 

metrics, such as ReHO, and fALFF, did not show significant correlations with either 

of the microstates. The DC metric showed a significant positive correlation with 

microstate C (Spearman correlation coefficient rs =0.73, adjusted p =0.01), as shown 

in Figure 3.  

 

 

 

 

Discussion and Conclusions: 

In this exploratory analysis, simultaneously acquired trimodal data were processed 

and analysed in order to investigate the relationship between rs-fMRI metrics, 

neurometabolic and neuroelectric measures. Each modality characterises 
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complimentary physiological information. The rs-fMRI metrics and FDG-PET SUV 

measure reveal distinct information about the functioning of the human brain. 

Furthermore, given that various groups have already explored and reported about the 

relationship between the rs-fMRI metrics and FDG-PET SUV measure (Aiello et al., 

2015; Riedl et al., 2014), this study mainly focused on utilising the advantage of 

simultaneously recorded EEG data for comparison with the rs-fMRI metrics and 

FDG-PET SUV measures. Each of the microstates calculated from EEG data also 

represents the global functional state of the brain via topographical plots. The four 

microstates, widely identified in various rs-studies (Koenig et al., 2002; Dietrich 

Lehmann et al., 2005; Andreas Stevens, Lutzenberger, Bartels, Strik, & Lindner, 

1997; Yuan, Zotev, Phillips, Drevets, & Bodurka, 2012), reflect different underlying 

functional networks. 

The rs-fMRI metrics, such as ReHo, and fALFF in the DMN region, did not show 

significant correlation with either of the microstates. This may be due to the fact that 

ReHo, and fALFF depict either local connectivity or voxel level fluctuations of LFO, 

whereas the microstates represent the global functional state of the brain.  

In contrast, the long-range rs-fMRI functional connectivity metric DC showed a 

significant positive correlation with microstate C (Figure 3). Various studies have 

shown that a major portion of the DMN is reflected in microstate C (Britz et al., 2010; 

Custo et al., 2017; Michel & Koenig, 2018; Seitzman et al., 2017). Our finding of a 

significant correlation between the DC metric in the DMN region and microstate C in 

the absence of correlations with short range measures highlight the importance of 

long range connections. These long range connections are most vulnerable to 

disease conditions (Mingoia et al., 2012; Yao et al., 2014; Zhou et al., 2016). Studies 

have reported on the extensive structural and functional connections between the 
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DMN regions in the frontal and occipital lobes (Khalsa, Mayhew, Chechlacz, Bagary, 

& Bagshaw, 2014).  

The neurometabolic measure, FDG-PET SUV in the DMN region, did not show 

significant correlations with microstates. A small number of groups have already 

reported about the inverse correlation between FDG-PET and EEG frequency bands. 

For instance, a study by Oakes et.al has demonstrated the existence of negative 

correlations between localised EEG power in the θ (6.5 – 8 Hz), α1 (8.5 – 10 Hz), 

and β1 (12.5 – 18 Hz) frequency bands and metabolic activity as measured via FDG-

PET (Oakes et al., 2004). In another study negative correlations between δ band (0.5 

– 4 Hz) of electrocorticography (ECoG, an invasive procedure to record 

electrophysiology directly from the cerebral cortex) and FDG-PET in patients with 

epilepsy (M. Nishida et al., 2008) were shown. Similarly, negative correlations 

between δ (1.5 – 4 Hz) frequency band of EEG and regional cerebral blood flow 

(rCBF) were also reported in healthy volunteers (Hofle et al., 1997). In addition to 

these studies, other works have also focussed on combined EEG and FDG-PET 

analysis in neurological and psychiatric disorders. A relationship between rs-EEG 

rhythms and hypo-metabolism in subjects with Alzheimer’s disease has been 

recently reported (Babiloni et al., 2016). Another study also reported associations 

between EEG high and low alpha power ratio and cortical glucose metabolism 

accessed via FDG-PET in subjects with MCI (Moretti et al., 2017). All of these 

studies show an inverse relationship between EEG and glucose metabolism, as 

accessed via FDG-PET, both in healthy subjects and subjects with disorders. All the 

findings reported above are interesting and interpretable, but cannot be used for 

direct comparison with the results obtained in this exploratory analysis, since this is 

the first exploratory study to investigate the relationship between neuroelectric 

signals via microstates and neurometabolic signals via FDG-PET. GFPs obtained 
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from most of the microstates showed negative correlations with SUV of FDG-PET, as 

shown in supplementary Figure 2. However, the correlations are not significant, 

which may be due to the limited number of subjects included in this exploratory 

analysis. Please note that the exposure to radioactivity to healthy volunteers is only 

allowed in a very narrow legal framework and requires the sample size calculation 

only at the lowest possible range. The results from the comparison of microstates 

and FDG-PET SUV tend to be in agreement with the classical perspective that EEG 

fluctuations may be inversely related to the activation of the brain (Davidson et al., 

2007).  

The DMN regions are found to be disrupted anatomically as well as functionally and 

are reported to play a critical role in the pathophysiology of various psychiatric and 

neurological disorders (Broyd et al., 2009; M.-L. Hu et al., 2017; Mohan et al., 2016). 

In this foremost exploratory analysis to underpin the relationship between 

neuroelectric measures of the rs-brain, as determined via microstates, with rs-fMRI 

metrics and FDG-PET SUV measures highlights the importance of long range 

connections. The DC metric from rs-fMRI, which was found to be significantly 

positively correlated with microstate C, was reported to be altered in various mental 

disorders, such as major depressive disorder (Murrough et al., 2016), schizophrenia 

and bipolar spectrum disorders (Skåtun et al., 2016). Similarly, variations in 

microstate C have been reported in various mental disorders such as schizophrenia 

(Dietrich Lehmann et al., 2005; Tomescu et al., 2014), frontotemporal dementia (K. 

Nishida et al., 2013) and panic disorder (Kikuchi et al., 2007). It is interesting to note 

from the aforementioned reported results that both the DC metric from rs-fMRI and 

microstate C show alterations in a broad spectrum of disorders. Combined analysis 

of similar or the same measurement from simultaneously acquired data in patients 

with such disorders can potentially pave the way for understanding pathophysiology 
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and developing the rs-fMRI image-based or electrophysiology-based biomarkers for 

the diagnosis, treatment and monitoring of neurological disorders.	 Another important 

finding in this study is the fact that the FDG-PET SUV measure, which was obtained 

from simultaneously recorded trimodal data, also shows a trend of inverse 

relationship with the neuroelectric measure microstate. Previous studies using FDG-

PET have shown alterations in cerebral glucose metabolism in disorders such as 

schizophrenia (J. H. Kim et al., 2017; Seethalakshmi et al., 2006), dementia (Lisa 

Mosconi et al., 2009; Shivamurthy, Tahari, Marcus, & Subramaniam, 2015) and in 

other psychiatric disorders (Newberg, Alavi, & Reivich, 2002; Newberg, Monti, Moss, 

& Alavi, 2012). Even though the FDG-PET measure is performed via a minimally 

invasive procedure, obtaining such a neurometabolic measure along with other 

modalities will improve diagnostic accuracy and may also help in early diagnosis 

(Polikar et al., 2010). The significant results and the trends prompt further research 

for replication and the transfer to different patient populations to exploit the mutual 

clinical potential.  

  



	 23 

Acknowledgements 

This study is part of the doctoral thesis (Dr. rer. medic.) of Ravichandran Rajkumar at 

the Medical Faculty of the RWTH Aachen University, Germany. We gratefully thank 

Dr. Jorge Arrubla for assistance in trimodal human data acquisition. The authors 

thank Prof. Thomas Koenig (University Hospital of Psychiatry, Bern, Switzerland) for 

providing support with EEG Lab Microstate plug-in. We thank Andrea Muren, 

Cornelia Frey, Silke Frensch, and Suzanne Schaden for their technical assistance. 

We would like to acknowledge our gratitude to Claire Rick and Joshua Lewis 

Bierbrier for proofreading the manuscript. This study was in part supported by the EU 

FP7 funded project TRIMAGE (Nr. 602621). 

 

 

 

  



	 24 

References: 

Abreu, R., Leal, A., & Figueiredo, P. (2018). EEG-Informed fMRI: A Review of Data 
Analysis Methods. Front. Hum. Neurosci., 12. 
http://doi.org/10.3389/fnhum.2018.00029 

Aiello, M., Salvatore, E., Cachia, A., Pappatà, S., Cavaliere, C., Prinster, A., … 
Quarantelli, M. (2015). NeuroImage Relationship between simultaneously 
acquired resting-state regional cerebral glucose metabolism and functional MRI : 
A PET / MR hybrid scanner study. NeuroImage, 113, 111–121. 
http://doi.org/10.1016/j.neuroimage.2015.03.017 

Andreou, C., Faber, P. L., Leicht, G., Schoettle, D., Polomac, N., Hanganu-Opatz, I. 
L., … Mulert, C. (2014). Resting-state connectivity in the prodromal phase of 
schizophrenia: Insights from EEG microstates. Schizophr Res, 152(2–3), 513–
520. http://doi.org/10.1016/j.schres.2013.12.008 

Babiloni, C., Del Percio, C., Caroli, A., Salvatore, E., Nicolai, E., Marzano, N., … 
Soricelli, A. (2016). Cortical sources of resting state EEG rhythms are related to 
brain hypometabolism in subjects with Alzheimer’s disease: an EEG-PET study. 
Neurobiol Aging, 48, 122–134. 
http://doi.org/10.1016/j.neurobiolaging.2016.08.021 

Badhwar, A. P., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., & Bellec, P. 
(2017). Resting-state network dysfunction in Alzheimer’s disease: A systematic 
review and meta-analysis. Alzheimers Dement (Amst)., 8, 73–85. 
http://doi.org/10.1016/j.dadm.2017.03.007 

Bai, Y., Xia, X., & Li, X. (2017). A review of resting-state electroencephalography 
analysis in disorders of consciousness. Front Neurol. 
http://doi.org/10.3389/fneur.2017.00471 

Bayouth, J. E., Casavant, T. L., Graham, M. M., Sonka, M., Muruganandham, M., & 
Buatti, J. M. (2011). Image-Based Biomarkers in Clinical Practice. Semin Radiat 
Oncol. http://doi.org/10.1016/j.semradonc.2010.11.003 

Berti, V., Mosconi, L., & Pupi, A. (2014). Brain: Normal variations and benign findings 
in fluorodeoxyglucose-PET/ computed tomography imaging. PET Clin., 9(2), 
129–140. http://doi.org/10.1016/j.cpet.2013.10.006 

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional 
connectivity in the motor cortex of resting human brain using echo-planar MRI. 
Magn. Reson. Med., 34(4), 537–41. 

Boellaard, R. (2008). Standards for PET Image Acquisition and Quantitative Data 
Analysis. J Nucl Med., 50(Suppl 1), 11S–20S. 
http://doi.org/10.2967/jnumed.108.057182 

Bowman, F. D., Guo, Y., & Derado, G. (2007). Statistical Approaches to Functional 
Neuroimaging Data. Neuroimaging Clin N Am. 
http://doi.org/10.1016/j.nic.2007.09.002 

Britz, J., Van De Ville, D., & Michel, C. M. (2010). BOLD correlates of EEG 
topography reveal rapid resting-state network dynamics. NeuroImage, 52, 1162–
1170. http://doi.org/10.1016/j.neuroimage.2010.02.052 

Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-
Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: A 
systematic review. Neurosci. Biobehav. Rev., 33(3), 279–296. 
http://doi.org/10.1016/j.neubiorev.2008.09.002 

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default 
network: anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci., 
1124, 1–38. http://doi.org/10.1196/annals.1440.011 



	 25 

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., … 
Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: 
mapping, assessment of stability, and relation to Alzheimer’s disease. J 
Neurosci, 29(6), 1860–1873. http://doi.org/10.1523/JNEUROSCI.5062-08.2009 

Custo, A., Van De Ville, D., Wells, W. M., Tomescu, M. I., Brunet, D., & Michel, C. M. 
(2017). Electroencephalographic Resting-State Networks: Source Localization of 
Microstates. Brain Connect., 7(10), 671–682. 
http://doi.org/10.1089/brain.2016.0476 

Davidson, R. J., Jackson, D. C., & Larson, C. L. (2007). Human 
electroencephalography. Handbook of psychophysiology. 
http://doi.org/10.1017/CBO9780511546396 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of 
single-trial EEG dynamics including independent component analysis. J. 
Neurosci. Methods, 134, 9–21. http://doi.org/10.1016/j.jneumeth.2003.10.009 

Dierks, T., Jelic, V., Julin, P., Maurer, K., Wahlund, L. O., Almkvist, O., … Winblad, B. 
(1997). EEG-microstates in mild memory impairment and Alzheimer’s disease: 
Possible association with disturbed information processing. J. Neural Transm., 
104(4–5), 483–495. http://doi.org/10.1007/BF01277666 

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R. (1996). 
Movement-related effects in fMRI time-series. Magn. Reson. Med., 35(3), 346–
355. http://doi.org/10.1002/mrm.1910350312 

Go’mez-Herrerol, G., Clercq, W. De, Anwara, H., Kara, O., Egiazarian, K., Huffel, S. 
Van, & Paesschen, W. Van. (2006). Automatic Removal of Ocular Artifacts in the 
EEG without an EOG Reference Channel. In NORSIG 2006, Reykjavik, Iceland 
(pp. 130–133). 

Goldman, R. I., Stern, J. M., Engel, J., & Cohen, M. S. (2000). Acquiring 
simultaneous EEG and functional MRI. Clin Neurophysiol, 111(11), 1974–1980. 
http://doi.org/10.1016/S1388-2457(00)00456-9 

Golkowski, D., Merz, K., Mlynarcik, C., Kiel, T., Schorr, B., Lopez-Rolon, A., … Ilg, R. 
(2017). Simultaneous EEG–PET–fMRI measurements in disorders of 
consciousness: an exploratory study on diagnosis and prognosis. J. Neurol., 
264(9), 1986–1995. http://doi.org/10.1007/s00415-017-8591-z 

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-
related brain potentials/fields I: A critical tutorial review. Psychophysiology. 
http://doi.org/10.1111/j.1469-8986.2011.01273.x 

Guerra, A. Del, Ahmad, S., Avram, M., Belcari, N., Berneking, A., Biagi, L., … 
Ziegler, S. (2017). TRIMAGE: A dedicated trimodality (PET/MR/EEG) imaging 
tool for schizophrenia. Fed Proc., 50, 7–20. 
http://doi.org/10.1016/J.EURPSY.2017.11.007 

Hampel, H., Teipel, S. J., Alexander, G. E., Pogarell, O., Rapoport, S. I., & Möller, H. 
J. (2002). In vivo imaging of region and cell type specific neocortical 
neurodegeneration in Alzheimer’s disease: Perspectives of MRI derived corpus 
callosum measurement for mapping disease progression and effects of therapy. 
Evidence from studies with MRI, EEG and . J Neural Transm, 109(5–6), 837–
855. http://doi.org/10.1007/s007020200069 

He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Regional 
coherence changes in the early stages of Alzheimer’s disease: A combined 
structural and resting-state functional MRI study. NeuroImage, 35(2), 488–500. 
http://doi.org/10.1016/j.neuroimage.2006.11.042 

Herzog, H., Langen, K. J., Weirich, C., Rota Kops, E., Kaffanke, J., Tellmann, L., … 
Shah, N. J. (2011). High resolution BrainPET combined with simultaneous MRI. 



	 26 

Nuklearmedizin, 50(2), 74–82. http://doi.org/10.3413/Nukmed-0347-10-09 
Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A. C., & Jones, B. E. 

(1997). Regional cerebral blood flow changes as a function of delta and spindle 
activity during slow wave sleep in humans. Journal Of Neuroscience, 17(12), 
4800–4808. 

Hohenfeld, C., Werner, C. J., & Reetz, K. (2018). Resting-state connectivity in 
neurodegenerative disorders: Is there potential for an imaging biomarker? 
NeuroImage: Clinical. http://doi.org/10.1016/j.nicl.2018.03.013 

Hu, M.-L., Zong, X.-F., Mann, J. J., Zheng, J.-J., Liao, Y.-H., Li, Z.-C., … Tang, J.-S. 
(2017). A Review of the Functional and Anatomical Default Mode Network in 
Schizophrenia. Neurosci Bull, 33(1), 73–84. http://doi.org/10.1007/s12264-016-
0090-1 

Hu, S., Chao, H. H. A., Zhang, S., Ide, J. S., & Li, C. S. R. (2014). Changes in 
cerebral morphometry and amplitude of low-frequency fluctuations of BOLD 
signals during healthy aging: Correlation with inhibitory control. Brain Struct. 
Func., 219(3), 983–994. http://doi.org/10.1007/s00429-013-0548-0 

Hur, Y. J., Lee, J. D. J. S., Lee, J. D. J. S., Yun, M. J., & Kim, H. D. (2013). 
Quantitative analysis of simultaneous EEG features during PET studies for 
childhood partial epilepsy. Yonsei Med J., 54(3), 572–577. 
http://doi.org/10.3349/ymj.2013.54.3.572 

Huster, R. J., Debener, S., Eichele, T., & Herrmann, C. S. (2012). Methods for 
simultaneous EEG-fMRI: an introductory review. J Neurosci, 32(18), 6053–60. 
http://doi.org/10.1523/JNEUROSCI.0447-12.2012 

Joyce, K. E., Laurienti, P. J., Burdette, J. H., & Hayasaka, S. (2010). A new measure 
of centrality for brain networks. PLoS ONE, 5(8). 
http://doi.org/10.1371/journal.pone.0012200 

Katayama, H., Gianotti, L. R. R., Isotani, T., Faber, P. L., Sasada, K., Kinoshita, T., & 
Lehmann, D. (2007). Classes of multichannel EEG microstates in light and deep 
hypnotic conditions. Brain Topogr, 20(1), 7–14. http://doi.org/10.1007/s10548-
007-0024-3 

Kennedy, A. M., Frackowiak, R. S. J., NEWMAN, S. K., BLOOMFIELD, P. M., 
SEAWARD, J., ROQUES, P., … Rossor, M. N. (1995). Deficits in cerebral 
glucose metabolism demonstrated by positron emission tomography in 
individuals at risk of familial Alzheimer’s disease. Neurosci. Lett., 186(1), 17–20. 
http://doi.org/10.1016/0304-3940(95)11270-7 

Kesler, S. R. (2014). Default mode network as a potential biomarker of 
chemotherapy-related brain injury. Neurobiol Aging. 
http://doi.org/10.1016/j.neurobiolaging.2014.03.036 

Khalsa, S., Mayhew, S. D., Chechlacz, M., Bagary, M., & Bagshaw, A. P. (2014). The 
structural and functional connectivity of the posterior cingulate cortex: 
Comparison between deterministic and probabilistic tractography for the 
investigation of structure-function relationships. NeuroImage, 102(P1), 118–127. 
http://doi.org/10.1016/j.neuroimage.2013.12.022 

Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in 
resting-state EEG: Current status and future directions. Neurosci Biobehav Rev. 
http://doi.org/10.1016/j.neubiorev.2014.12.010 

Kikuchi, M., Koenig, T., Wada, Y., Higashima, M., Koshino, Y., Strik, W., & Dierks, T. 
(2007). Native EEG and treatment effects in neuroleptic-naïve schizophrenic 
patients: Time and frequency domain approaches. J Schizophr Res, 97(1–3), 
163–172. http://doi.org/10.1016/j.schres.2007.07.012 

Kim, J. H., Kim, J. H., Son, Y. D., Joo, Y. H., Lee, S. Y., Kim, H. K., & Woo, M. K. 



	 27 

(2017). Altered interregional correlations between serotonin transporter 
availability and cerebral glucose metabolism in schizophrenia: A high-resolution 
PET study using [11C]DASB and [18F]FDG. J Schizophr Res, 182, 55–65. 
http://doi.org/10.1016/j.schres.2016.10.020 

Kim, K. H., Yoon, H. W., & Park, H. W. (2004). Improved ballistocardiac artifact 
removal from the electroencephalogram recorded in fMRI. J Neurosci Methods, 
135(1–2), 193–203. http://doi.org/10.1016/j.jneumeth.2003.12.016 

Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., … 
John, E. R. (2002). Millisecond by millisecond, year by year: Normative EEG 
microstates and developmental stages. NeuroImage, 16(1), 41–48. 
http://doi.org/10.1006/nimg.2002.1070 

Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. 
L., … Jagust, W. J. (2011). Associations between cognitive, functional, and 
FDG-PET measures of decline in AD and MCI. Neurobiol Aging, 32(7), 1207–
1218. http://doi.org/10.1016/j.neurobiolaging.2009.07.002 

Laruelle, M., Iyer, R. N., Al-Tikriti, M. S., Zea-Ponce, Y., Malison, R., Zoghbi, S. S., … 
Bradberry, C. W. (1997). Microdialysis and SPECT measurements of 
amphetamine-induced dopamine release in nonhuman primates. Synapse, 
25(1), 1–14. http://doi.org/10.1002/(SICI)1098-2396(199701)25:1<1::AID-
SYN1>3.0.CO;2-H 

Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-State fMRI: A Review of 
Methods and Clinical Applications. AJNR Am J Neuroradiol, 34(10), 1866–1872. 
http://doi.org/10.3174/ajnr.A3263 

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis 
using an extended infomax algorithm for mixed subgaussian and supergaussian 
sources. Neural Computation, 11(2), 417–441. 

Lehmann, D. (1990). Past, present and future of topographic mapping. Brain 
Topography, 3(1), 191–202. http://doi.org/10.1007/BF01128876 

Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T., Koukkou, 
M., … Koenig, T. (2005). EEG microstate duration and syntax in acute, 
medication-naïve, first-episode schizophrenia: A multi-center study. Psychiatry 
Res. Neuroimaging, 138(2), 141–156. 
http://doi.org/10.1016/j.pscychresns.2004.05.007 

Lehmann, D., Pascual-Marqui, R., & Michel, C. (2009). EEG microstates. 
Scholarpedia, 4(3), 7632. http://doi.org/10.4249/scholarpedia.7632 

Lehmann, D., & Skrandies, W. (1980). Reference-free identification of components of 
checkerboard-evoked multichannel potential fields. Electroencephalogr Clin 
Neurophysiol, 48(6), 609–621. http://doi.org/10.1016/0013-4694(80)90419-8 

Li, Z., Kadivar, A., Pluta, J., Dunlop, J., & Wang, Z. (2012). Test-retest stability 
analysis of resting brain activity revealed by blood oxygen level-dependent 
functional MRI. J Magn Reson Imaging, 36(2), 344–354. 
http://doi.org/10.1002/jmri.23670 

Liu, H., Liu, Z., Liang, M., Hao, Y., Tan, L., Kuang, F., … Jiang, T. (2006). Decreased 
regional homogeneity in schizophrenia: a resting state functional magnetic 
resonance imaging study. Neuroreport, 17(1), 19–22. 
http://doi.org/10.1097/01.wnr.0000195666.22714.35 

Liu, S., Cai, W., Liu, S., Zhang, F., Fulham, M., Feng, D., … Kikinis, R. (2015). 
Multimodal neuroimaging computing: a review of the applications in 
neuropsychiatric disorders. Brain Inform, 2(3), 167–180. 
http://doi.org/10.1007/s40708-015-0019-x 

Long, X.-Y., Zuo, X.-N., Kiviniemi, V., Yang, Y., Zou, Q.-H., Zhu, C.-Z., … Zang, Y.-F. 



	 28 

(2008). Default mode network as revealed with multiple methods for resting-state 
functional MRI analysis. J Neurosci Methods, 171(2), 349–355. 
http://doi.org/10.1016/j.jneumeth.2008.03.021 

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the 
temporal dynamics of whole-brain neuronal networks: A review. NeuroImage, 
180, 577–593. http://doi.org/https://doi.org/10.1016/j.neuroimage.2017.11.062 

Mingoia, G., Wagner, G., Langbein, K., Maitra, R., Smesny, S., Dietzek, M., … 
Nenadic, I. (2012). Default mode network activity in schizophrenia studied at 
resting state using probabilistic ICA. Schizophr Res. 
http://doi.org/10.1016/j.schres.2012.01.036 

Mohan, A., Roberto, A. J., Mohan, A., Lorenzo, A., Jones, K., Carney, M. J., … 
Lapidus, K. A. B. (2016). The significance of the Default Mode Network (DMN) in 
neurological and neuropsychiatric disorders: A review. Yale J Biol Med, 89(1), 
49–57. 

Moretti, D. V., Pievani, M., Pini, L., Guerra, U. P., Paghera, B., & Frisoni, G. B. 
(2017). Cerebral Pet Glucose Hypometabolism in Subjects with Mild Cognitive 
Impairment and Higher Eeg High Alpha/Low Alpha Frequency Power Ratio. 
Neurobiol Aging, S0197-4580. 
http://doi.org/10.1016/j.neurobiolaging.2017.06.009 

Mosconi, L., Mistur, R., Switalski, R., Tsui, W. H., Glodzik, L., Li, Y., … De Leon, M. 
J. (2009). FDG-PET changes in brain glucose metabolism from normal cognition 
to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging, 
36(5), 811–822. http://doi.org/10.1007/s00259-008-1039-z 

Mosconi, L., Tsui, W. H., De Santi, S., Li, J., Rusinek, H., Convit, A., … De Leon, M. 
J. (2005). Reduced hippocampal metabolism in MCI and AD: Automated FDG-
PET image analysis. Neurology, 64(11), 1860–1867. 
http://doi.org/10.1212/01.WNL.0000163856.13524.08 

Murrough, J. W., Abdallah, C. G., Anticevic, A., Collins, K. A., Geha, P., Averill, L. A., 
… Charney, D. S. (2016). Reduced global functional connectivity of the medial 
prefrontal cortex in major depressive disorder. Hum Brain Mapp, 37(9), 3214–
3223. http://doi.org/10.1002/hbm.23235 

Musso, F., Brinkmeyer, J., Mobascher, A., Warbrick, T., & Winterer, G. (2010). 
Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis 
approach to explore resting-state networks. NeuroImage, 52, 1149–1161. 
http://doi.org/10.1016/j.neuroimage.2010.01.093 

Newberg, A., Alavi, A., & Reivich, M. (2002). Determination of regional cerebral 
function with FDG-PET imaging in neuropsychiatric disorders. Semin Nucl Med., 
32(1), 13–34. http://doi.org/10.1053/snuc.2002.29276 

Newberg, A., Monti, D., Moss, A., & Alavi, A. (2012). Positron emission tomography 
in neurological and psychiatric disorders. Int J Imaging Syst Technol., 22(1), 2–
17. http://doi.org/10.1002/ima.22004 

Niazy, R. K., Beckmann, C. F., Iannetti, G. D., Brady, J. M., & Smith, S. M. (2005). 
Removal of FMRI environment artifacts from EEG data using optimal basis sets. 
NeuroImage, 28(3), 720–737. http://doi.org/10.1016/j.neuroimage.2005.06.067 

Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., … 
Koenig, T. (2013). EEG microstates associated with salience and frontoparietal 
networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. 
Clin Neurophysiol, 124(6), 1106–1114. 
http://doi.org/10.1016/j.clinph.2013.01.005 

Nishida, M., Asano, E., Juhász, C., Muzik, O., Sood, S., & Chugani, H. T. (2008). 
Cortical glucose metabolism correlates negatively with delta-slowing and spike-



	 29 

frequency in epilepsy associated with tuberous sclerosis. Hum Brain Mapp, 
29(11), 1255–1264. http://doi.org/10.1002/hbm.20461 

O’Halloran, R., Kopell, B. H., Sprooten, E., Goodman, W. K., & Frangou, S. (2016). 
Multimodal neuroimaging-informed clinical applications in neuropsychiatric 
disorders. Front Psychiatry, 7(APR). http://doi.org/10.3389/fpsyt.2016.00063 

Oakes, T. R., Pizzagalli, D. A., Hendrick, A. M., Horras, K. A., Larson, C. L., 
Abercrombie, H. C., … Davidson, R. J. (2004). Functional coupling of 
simultaneous electrical and metabolic activity in the human brain. Hum Brain 
Mapp, 21(4), 257–270. http://doi.org/10.1002/hbm.20004 

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance 
imaging with contrast dependent on blood oxygenation. Biophysics, 87, 9868–
9872. 

Polikar, R., Tilley, C., Hillis, B., & Clark, C. M. (2010). Multimodal EEG, MRI and PET 
data fusion for Alzheimer’s disease diagnosis. 32nd Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, 2010 Aug 
31 - Sep 4, Buenos Aires, 6058–6061. 
http://doi.org/10.1109/IEMBS.2010.5627621 

Raichle, M. E. (2015). The Brain’s Default Mode Network. Annual Review of 
Neuroscience. http://doi.org/10.1146/annurev-neuro-071013-014030 

Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief 
history of an evolving idea. NeuroImage, 37, 1083–1090. 
http://doi.org/10.1016/j.neuroimage.2007.02.041 

Rajkumar, R., Mauler, J., Rota Kops, E., Arrubla, J., Tellmann, L., Lerche, C., … 
Neuner, I. (2017). Simultaneous resting state fMRI - FDG PET measurement in 
humans: Does the FDG - PET framing matter? In 28th Symposium on Cerebral 
Blood Flow, Metabolism and Function and 13th Conference on Quantification of 
Brain Function with PET. http://doi.org/10.1016/S0140-6736(13)62631-8 

Riedl, V., Bienkowska, K., Strobel, C., Tahmasian, M., Grimmer, T., Förster, S., … 
Drzezga, A. (2014). Local activity determines functional connectivity in the 
resting human brain: a simultaneous FDG-PET/fMRI study. J Neurosci, 34(18), 
6260–6. http://doi.org/10.1523/JNEUROSCI.0492-14.2014 

Riedl, V., Utz, L., Castrillón, G., Grimmer, T., Rauschecker, J. P., Ploner, M., … Sorg, 
C. (2015). Metabolic connectivity mapping reveals effective connectivity in the 
resting human brain. Proc. Natl. Acad. Sci., 113(2), 201513752. 
http://doi.org/10.1073/pnas.1513752113 

Ritter, P., & Villringer, A. (2006). Simultaneous EEG-fMRI. Neurosci Biobehav Rev, 
30(6), 823–38. http://doi.org/10.1016/j.neubiorev.2006.06.008 

Rota Kops, E., Hautzel, H., Herzog, H., Antoch, G., & Shah, N. J. (2015). 
Comparison template-based versus CT-based attenuation correction for hybrid 
MR/PET scanners. IEEE Trans Nucl Sci, 62(5), 2115–2121. 
http://doi.org/10.1109/TNS.2015.2452574 

Seethalakshmi, R., Parkar, S. R., Nair, N., Adarkar, S. a, Pandit,  a G., Batra, S. a, … 
Moghe, S. H. (2006). Regional brain metabolism in schizophrenia: An FDG-PET 
study. Indian J Psychiatry, 48(3), 149–53. http://doi.org/10.4103/0019-
5545.31577 

Seitzman, B. A., Abell, M., Bartley, S. C., Erickson, M. A., Bolbecker, A. R., & Hetrick, 
W. P. (2017). Cognitive manipulation of brain electric microstates. NeuroImage, 
146, 533–543. http://doi.org/https://doi.org/10.1016/j.neuroimage.2016.10.002 

Shah, N. J., Arrubla, J., Rajkumar, R., Farrher, E., Mauler, J., Rota Kops, E., … 
Neuner, I. (2017). Multimodal Fingerprints of Resting State Networks as 
assessed by Simultaneous Trimodal MR-PET-EEG Imaging. Sci Rep, 7(1), 



	 30 

6452. http://doi.org/10.1038/s41598-017-05484-w 
Shah, N. J., Oros-Peusquens, A.-M. M., Arrubla, J., Zhang, K., Warbrick, T., Mauler, 

J., … Neuner, I. (2013). Advances in multimodal neuroimaging: Hybrid MR-PET 
and MR-PET-EEG at 3 T and 9.4 T. J. Magn. Reson., 229, 101–15. 
http://doi.org/10.1016/j.jmr.2012.11.027 

Shehzad, Z., Kelly, A. M. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., … 
Milham, M. P. (2009). The resting brain: Unconstrained yet reliable. Cereb. 
Cortex, 19(10), 2209–2229. http://doi.org/10.1093/cercor/bhn256 

Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). 
Decoding subject-driven cognitive states with whole-brain connectivity patterns. 
Cereb Cortex, 22(1), 158–165. http://doi.org/10.1093/cercor/bhr099 

Shivamurthy, V. K. N., Tahari, A. K., Marcus, C., & Subramaniam, R. M. (2015). 
Brain FDG PET and the diagnosis of dementia. AJR Am J Roentgenol. 
http://doi.org/10.2214/AJR.13.12363 

Simon, R., & Engström, M. (2015). The default mode network as a biomarker for 
monitoring the therapeutic effects of meditation. Front. Psychol. 
http://doi.org/10.3389/fpsyg.2015.00776 

Skåtun, K. C., Kaufmann, T., Tønnesen, S., Biele, G., Melle, I., Agartz, I., … Westlye, 
L. T. (2016). Global brain connectivity alterations in patients with schizophrenia 
and bipolar spectrum disorders. J Psychiatry Neurosci, 41(3), 150159. 
http://doi.org/10.1503/jpn.150159 

Sokoloff, L. (1981). Relationships among local functional activity, energy metabolism, 
and blood flow in the central nervous system. Federation Proceedings, 40(8), 
2311–2316. 

Stevens, A., Günther, W., Lutzenberger, W., Bartels, M., & Müller, N. (1996). 
Abnormal topography of EEG microstates in Gilles de la Tourette syndrome. Eur 
Arch Psychiatry Clin Neurosci, 246(6), 310–316. 
http://doi.org/10.1007/BF02189024 

Stevens, A., Lutzenberger, W., Bartels, D. M., Strik, W., & Lindner, K. (1997). 
Increased duration and altered topography of EEG microstates during cognitive 
tasks in chronic schizophrenia. Psychiatry Res, 66(1), 45–57. 
http://doi.org/10.1016/S0165-1781(96)02938-1 

Stuart, A. (1956). Rank Correlation Methods. By M. G. Kendall, 2nd edition. British 
Journal of Statistical Psychology, 9(1). 

Thie, J. A. (2004). Understanding the standardized uptake value, its methods, and 
implications for usage. J Nucl Med., 45(9), 1431–4. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/15347707 

Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. J. 
Comput. Graph. Stat., 14(3), 511–528. http://doi.org/10.1198/106186005X59243 

Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain networks. Mol. 
Psychiatry, 17(5), 549–558. http://doi.org/10.1038/mp.2011.81 

Tomasi, D., Wang, G.-J., & Volkow, N. D. (2013). Energetic cost of brain functional 
connectivity. PNAS, 110(33), 13642–13647. 
http://doi.org/10.1073/pnas.1303346110 

Tomescu, M. I., Rihs, T. A., Becker, R., Britz, J., Custo, A., Grouiller, F., … Michel, C. 
M. (2014). Deviant dynamics of EEG resting state pattern in 22q11.2 deletion 
syndrome adolescents: A vulnerability marker of schizophrenia? Schizophr Res, 
157(1–3), 175–181. http://doi.org/10.1016/j.schres.2014.05.036 

Uludağ, K., & Roebroeck, A. (2014). General overview on the merits of multimodal 
neuroimaging data fusion. NeuroImage. 
http://doi.org/10.1016/j.neuroimage.2014.05.018 



	 31 

Van De Ville, D., Britz, J., Michel, C. M., & Nikos Logothetis,  by K. (2010). EEG 
microstate sequences in healthy humans at rest reveal scale-free dynamics. 
PNAS, 107(42), 18179–18184. http://doi.org/10.1073/pnas.1007841107 

Winkler, I., Haufe, S., & Tangermann, M. (2011). Automatic Classification of 
Artifactual ICA- Components for Artifact Removal in EEG Signals. Behav Brain 
Funct., 7(30), 1–15. http://doi.org/10.1186/1744-9081-7-30 

Xi, Q., Zhao, X., Wang, P., Guo, Q., Jiang, H., Cao, X., … Yan, C. (2012). 
Spontaneous brain activity in mild cognitive impairment revealed by amplitude of 
low-frequency fluctuation analysis: A resting-state fMRI study. Radiologia 
Medica, 117(5), 865–871. http://doi.org/10.1007/s11547-011-0780-8 

Yan, C. G., Wang, X. Di, Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data Processing & 
Analysis for (Resting-State) Brain Imaging. Neuroinformatics, 14(3), 339–351. 
http://doi.org/10.1007/s12021-016-9299-4 

Yao, N., Shek-Kwan Chang, R., Cheung, C., Pang, S., Lau, K. K., Suckling, J., … 
Mcalonan, G. M. (2014). The default mode network is disrupted in parkinson’s 
disease with visual hallucinations. Hum Brain Mapp. 
http://doi.org/10.1002/hbm.22577 

Yuan, H., Zotev, V., Phillips, R., Drevets, W. C., & Bodurka, J. (2012). 
Spatiotemporal dynamics of the brain at rest - Exploring EEG microstates as 
electrophysiological signatures of BOLD resting state networks. NeuroImage, 
60(4), 2062–2072. http://doi.org/10.1016/j.neuroimage.2012.02.031 

Zang, Y., He, Y., Zhu, C., Cao, Q., Sui, M., Liang, M., … Wang, Y. (2007). Altered 
baseline brain activity in children with ADHD revealed by resting-state functional 
MRI. Brain & Development, 29(2), 83–91. 
http://doi.org/10.1016/j.braindev.2006.07.002 

Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach 
to fMRI data analysis. NeuroImage, 22, 394–400. 
http://doi.org/10.1016/j.neuroimage.2003.12.030 

Zhang, Y., Han, J., Hu, X., Guo, L., & Liu, T. (2013). Data-driven evaluation of 
functional connectivity metrics. In Proceedings - International Symposium on 
Biomedical Imaging (pp. 532–535). http://doi.org/10.1109/ISBI.2013.6556529 

Zhou, L., Pu, W., Wang, J., Liu, H., Wu, G., Liu, C., … Liu, Z. (2016). Inefficient DMN 
Suppression in Schizophrenia Patients with Impaired Cognitive Function but not 
Patients with Preserved Cognitive Function. Sci Rep. 
http://doi.org/10.1038/srep21657 

Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., … Zang, Y. F. 
(2008). An improved approach to detection of amplitude of low-frequency 
fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J Neurosci Methods, 
172(1), 137–141. http://doi.org/10.1016/j.jneumeth.2008.04.012 

Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., … 
Milham, M. P. (2010). The oscillating brain: Complex and reliable. NeuroImage, 
49(2), 1432–1445. http://doi.org/10.1016/j.neuroimage.2009.09.037 

Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & 
Milham, M. P. (2012). Network centrality in the human functional connectome. 
Cereb. Cortex., 22(8), 1862–1875. http://doi.org/10.1093/cercor/bhr269 

Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., … Milham, M. P. (2013). 
Toward reliable characterization of functional homogeneity in the human brain: 
Preprocessing, scan duration, imaging resolution and computational space. 
NeuroImage, 65, 374–386. http://doi.org/10.1016/j.neuroimage.2012.10.017 

 
 



	 32	

 

 

 



	 33	

Figure Legends: 

Figure 1: FDG-PET standardised uptake value (SUV; upper row) and resting state 

fMRI metrics such as regional homogeneity (ReHo), degree of centrality (DC), 

and fractional amplitude of low frequency fluctuations (fALFF) . Sagittal slices (x 

= -40, -2 , 6 and 30 in MNI space), averaged across all the 10 subjects, are 

shown. 

Figure 2: The four prominent microstates (group template) identified and sorted 

across the 10 subjects. 

Figure 3: Correlation plot between mean GFP of microstate C and rs-fMRI DC metric 

(c). For the purpose of visual observation the axial slice (z=12 in MNI space) of 

rs-fMRI DC metric (a) and EEG microstate C (b) are shown in the top row. 

Supp.Fig. 1: Saggital slices of the DMN mask. The DMN mask is generated by 

adding dorsal and ventral DMN regions, which were obtained from an atlas of 90 

functional region of interest (fROI) (Shirer et al., 2012). 

Supp. Fig 2: Correlation plots between mean GFP of microstates (MS) and mean rs-

fMRI and FDG-PET SUV measures in DMN region. 

 


